
Toxic Comments Classifier (Team 899129)
Satvik Sunkam Ramaprasad

satviksunkam.ramaprasad@iiitb.org
IMT2016008

Raghavan G V
raghavan.gv@iiitb.org

IMT2016099

Ananth Shreekumar
ananth.shreekumar@iiitb.org

IMT2016129

Abstract—As the internet is gaining popularity day by
day, more people actively express their views in various
forums by writing blogs and comments. Some of the
comments may be vituperative or abusive, and it is the
responsibility of the platform to identify such content and
take appropriate action. Since it is impossible to manually
search for such comments, there is a need to build a model
that can classify text into different levels of obscenities.

Index Terms—Machine Learning, Logistic Regression,
XGBoost, Random Forest, NB - SVM, Blending, Stacking

I. INTRODUCTION

The Toxic Comments Classifier Problem was hosted
on Kaggle by The Conversation AI team, a research
initiative founded by Jigsaw and Google (both a part of
Alphabet). They are working on tools to help improve
online conversation. One area of focus is the study of
negative online behaviors, like toxic comments.

Here, we try to build a model that classifies an input
text into categories - toxic, severe toxic, obscene, threat,
insult, and identity hate. A given piece of text could
belong to none, one or many of these categories. Hence,
the problem is a MultiLabel Classification Problem.

II. DATA

The data set was provided on Kaggle. The data set
included two files:

• train.csv - the training set
• test.csv - the test set
The training data set contained 140K data points. The

test data set contains 10000 data points.

Data Attributes for train.csv
• id - unique id value for a comment
• comment text - the comment content
• toxic - boolean field to indicate toxic
• severe toxic - boolean field to indicate severe toxic
• obscene - boolean field to indicate obscene
• threat - boolean field to indicate threat
• insult - boolean field to indicate insult

• identity hate-boolean field to indicate identity hate
The test data set contains 10000 data points.

Data Attributes for test.csv
• id - unique id value for a comment
• comment text - the comment content

Additionally, the dataset also contained a sampleSub-
mission.csv file, which was a sample submission file in
the correct format for reference.

III. DATA PREPROCESSING

Since the given comment text was just the comments
taken off of the internet, preprocessing the data was
required to make it ‘cleaner’. We had several ideas in
mind.

Preprocessing steps
• Remove punctuation
• Remove excess white space
• Stemming of words
• Convert to lowercase
• Remove accents
• Grammar modifications like ”don’t” → ”do not”
• Replacing emoticons such as ”:)” → ”smile”
• Removing stop words such as ”the”, ”a”
• Lemmatization of words

We first removed excess white spaces. This did not
affect our score. Tfidf vectorizer appears to handle ex-
cess white spaces. Then, we tried to remove punctuation
from the comments, as we thought punctuation will
confuse the model. However, contrary to our belief, the
punctuation did actually help the model, so we decided
to include punctuation in the comment text.

We then decided to clean the data using grammar. We
replaced words like ‘it’s’ with ‘it is’, ‘’nt’ with ‘ not’,
in the hope that the model could recognize words better.



However, this did not improve our score at all, so we
decided to use the original comments.

We tried applying Stemming and lemmatization using
the nltk library. Both approaches gave marginal improve-
ment in cross validation score. However on submission,
Kaggle reported a lower score. The process was ex-
tremely slow and resource costly. Therefore we decided
to proceed without this preprocessing step.

Converting all text to lowercase and removal of ac-
cents helped. Further, removal of stop words helped.

IV. EXPLORATORY DATA ANALYSIS

Our training dataset was extremely skewed as shown
below: We tried to look at the correlation between the

labels using the heatmap given below. A high correlation
between two labels means that those two labels usually
occur together. We tried to check if the number of
capital letters in ’clean’ comments actually varies from
the ’dirty’ comments. However, as the violin plot below
shows, there is almost no difference between the two.

V. FEATURE ENGINEERING

A. Extracting simple features

We believed, since the only feature we were given
was the comment text, adding more features from the
comment text was likely to increase the model accuracy.
We figured that the fraction of capital letters in a given
text might be indicative of vituperative text. Hence, we
added a feature that was the number of capital letters in
the comment, normalized by the length of the comment.
Similarly, the number of punctuations in a given text
could also indicate abusive content. We added another
feature that was the number of punctuations in the

comment, normalized by the comment length.

Extracted Features

• Length of comment
• Number of capitals
• Number of capitals/ Length of comment
• Number of exclamation marks
• Number of question marks
• Number of symbols ($%#* and others)
• Number of smilies

These features can be seen in /jupyter/
SimpleFeatures.ipynb.



B. Selection of important words/tokens

Our data set was very large. Therefore, Tf-idf extracts
a lot of words from the data set. However, we noticed
that, by limiting the vectorizer using parameters like
min df, max df and max features, we were losing out
on a few important words. This was more pronounced,
when we tried using bi-grams and tri-grams. We
believed that the high number of features would slow
down the training process.Also, the model might have
difficulty converging.

We decided to select important words and tokens
by considering their absolute correlation with the
label. We used a CountVectorizer, set it to binary and
found the exhaustive vocabulary of the text. We then
found absolute correlation with the word/token and the
class(toxic, obscene etc). We used absolute correlation,
because we needed tokens with high positive correlation
as well as those with high negative correlation.

Since the data set was very large, we had to split the
process into several batches and finally aggregate the re-
sults. The process took several hours using multiple PCs.
The results can be found in /features folder. The
code can be found in /src/FeatureEngineering.
py and /src/FeatureAggregator.py

VI. CODE STRUCTURE

We have used object oriented code right from
the start. We realized that lot of the code for the
different models are similar. However the features and
preprocessing are not similar. Therefore we created an
abstract base class called BaseModel. All models
inherit from it and implement the functions.

This structure also highly helped in implementing
our custom blender class Blender. Since each model
was a separate class and can be pickled individually,
we could run our blending process smoothly and fast.

We used jupyter for development, all notebooks can
be found in jupyter. The code from jupyter notebooks
has been exported to src. Submission files for all
models can be found in answers.

Toxic Comment Classifier

jupyter

EDA2.ipynb

src

BaseModel.py

LogisticRegression3.py

NBSvm1.py

Blender2.py

answers

LogisticRegression3_submission.csv

input

train.csv

test.csv

cleaned_train.csv

cleaned_test.csv

pickle

features

toxic

1.json

results

requirements.txt

VII. MODELS AND TRAINING

A. Model using simple features

File: /src/SimpleFeatures.py
To start off, We used the simple features that we ex-
tracted in section V-A. We used logistic regression to
build the model. The cross validation score was 0.71.
Stacking the model with itself, the score rose to 0.75,
which was pretty good considering that this model was
built using a small portion of the data set. However, when
we tried appending these features with the vectorized
features from tf-idf, the score remained unchanged. We
then decided to try both stacking and blending. Unfor-
tunately, stacking did not help at all. Blending was not
applicable, because other models were giving a cross
validation score of 0.98, so the score was bound to
decrease.



B. Model using word tokenizer

File: /src/LogisticRegression1.py
We used TfIdfVectorizer to build a word tokenizer. We
used an ngram range of (1, 1), so that each word is
considered a feature. This gave a decent cross validation
score of 0.98178 with logistic regression. When we tried
using higher ngrams such as bi-grams and tri-grams, the
score seemed to decrease.

C. Model using character tokenizer

File: /src/LogisticRegression2.py
Using the TfIdfVectorizer we built a character tokenizer
and an ngram range (2, 4) gave a better score of 0.98422
with logistic regression.

D. Model using both words and character tokenizer

File: /src/LogisticRegression3.py
We stacked the features of both word tokenizer and
character tokenizer. This significantly improved the score
to 0.98512. Using grid search and fine tuning, the score
only increased marginally. We seemed to have hit an
upper limit of 0.9855.

E. XGBoost and RandomForest

File: /src/RandomForest1.py,
When we tried XGBoost, the model score was very
far behind logistic regression. Even random forest was
slightly behind logistic regression. Considering the large
number of features, we believe that XGBoost and Ran-
dom Forest overfit on the data. This would explain the
low score.

F. NB-Svm

File: /src/NBSvm1.py
Since we got the best score with Logistic Regression, we
decided to use some similar models, like Naive Bayes
SVM. By using NB-Svm, we got our best single model
score of 0.98669. The model was trained on both word
and character tokenized features.

G. Blending and Stacking

We used blending of multiple models to get our best
score. We decided not to use Voting Classifier, because
that would need to train all the models individually for
each blend. Moreover, it was not easy to set the weights
for the different estimators. Therefore we built our own
blender. Stacking decreased the score. So we decided to
not go with it.
File: /jupyter/Blender2.ipynb.

We got our best score by blending NBSvm,
LogisticRegression and RandomForest. The kaggle
public leaderboard score was 0.98777.

VIII. RESULTS AND ANALYSIS

The table below shows the models that we created
along with their scores. The evaluation metric used here
is the AUC-ROC score. Single Model scores are based
on cross validation. Blended models score are based on
Kaggle public leaderboard.

MODEL AUC-ROC
Simple Logistic Regression 0.70522
XGBoost 0.80147
Random Forest 0.97358
Logistic Regression (Words) 0.98178
Logistic Regression (Chars) 0.98422
Logistic Regression (Chars and Words) 0.98512
Blend Logistic Regression and Random
Forest

0.98589

Naive Bayes SVM 0.98669
Blend Logistic Regression, Naive Bayes
SVM and Random Forest

0.98777

Confusion Matrix and Area under the curve graphs
are shown in appendix.

Pickle file can be found here: Google Drive

ACKNOWLEDGMENT

The authors would like to thank the professors for
their continued guidance, support and encouragement.
Further, the authors would like to thank the teaching
assistants for their valuable time and encouragement. A
special thanks to Team Dark Knights (Tejas Kotha, Tan-
may Jain) for having intellectual discussions regarding
various approaches in preprocessing, feature selection,
model selections, and more.

REFERENCES

[1] “Scikit-learn documentation.” [Online]. Available: http:
//scikit-learn.org/stable/documentation.html

[2] “Pandas documentation.” [Online]. Available: https://pandas.
pydata.org/pandas-docs/stable/

[3] “Numpy documentation.” [Online]. Available: https://docs.scipy.
org/doc/

[4] “Matplotlib documentation.” [Online]. Available: https:
//matplotlib.org/contents.html

[5] S. Wang and C. D. Manning, “Baselines and bigrams: Simple,
good sentiment and topic classification,” in Proceedings of the
50th Annual Meeting of the Association for Computational
Linguistics: Short Papers - Volume 2, ser. ACL ’12. Stroudsburg,
PA, USA: Association for Computational Linguistics, 2012,
pp. 90–94. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2390665.2390688

https://drive.google.com/file/d/1EdX-hcHkiv_9FWKZDbipxyAQeOzs_g6M/view
http://scikit-learn.org/stable/documentation.html
http://scikit-learn.org/stable/documentation.html
https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://matplotlib.org/contents.html
https://matplotlib.org/contents.html
http://dl.acm.org/citation.cfm?id=2390665.2390688
http://dl.acm.org/citation.cfm?id=2390665.2390688


IX. APPENDIX






	Introduction
	Data
	Data Preprocessing
	Exploratory Data Analysis
	Feature Engineering
	Extracting simple features
	Selection of important words/tokens

	Code structure
	Models and Training
	Model using simple features
	Model using word tokenizer
	Model using character tokenizer
	Model using both words and character tokenizer
	XGBoost and RandomForest
	NB-Svm
	Blending and Stacking

	Results and Analysis
	References
	Appendix

