
Code Forces Rating Predictor
Satvik Ramaprasad

satviksunkam.ramaprasad@iiitb.org
IMT2016008

Raghavan G V
raghavan.gv@iiitb.org

IMT2016099

Ananth Shreekumar
ananth.shreekumar@iiitb.org

IMT2016129

Abstract—Competitive Programming is a mind sport
where programmers are expected to solve challenging
problems in a given timeframe. It is known for involving
problem statements that require creative thinking on the
part of the programmers. Competitive programmers are
tested on their months of hard work and persistence,
alongside their ability to solve a problem and build a code.
This sport has been gaining popularity across the students
of India since half a decade

This paper is a report on a project that was conducted
to predict a user’s rating on Code Forces - A Competitive
Programming Platform - using concepts from Machine
Learning. We propose to create a model that will predict
a user’s rating based on the problems that he has solved.
We solve two problems - given a user’s data, predict his
maximum rating using regression approaches, and given a
user’s data, predict his rank using classification techniques.
Rank is determined by his rating.

I. INTRODUCTION

Programming is one the most sought-after skills in the
World today. However, a good programmer must also
know algorithms to solve problems and to come up with
his own algorithms for an efficient solution.

Code Forces is a website where people can sign up
and hone their skills in programming and algorithms in
a language of their choice. The submitted solutions are
run through a set of test cases to check their correctness.
Codeforces also conducts weekly contests, during which
the contestants are expected to code up a solution to
the given problems. The programmer’s rating is affected
based on criteria - the number of problems solved,
the time taken to solve, and the number of wrong
submissions for a problem during the contest.

In this paper, we also present a novel approach on
using the information about the quantity and quality of
the problems that he has practiced all along and we want
to predict the current rating of the user.

By doing this we give users a vague prediction of what
his / her current rating will be according to her practice.

II. DATASET

Since this is a new problem, there was no dataset
available which captured all the necessity “features”. We
had to generate our own dataset using a combination
of the APIs provided by Codeforces and scraping some
pages of their website. Given the time consuming nature
of crawling/scraping, we decided to first select data
attributes from which we can extract features.

A. User Dataset

Using Codeforces API, we obtained raw user data of
all users on the platform. There were a total of 158K
users from several countries. Given the time constraint,
we decided to restrict ourselves to Indian users. Upon
filtering, we obtained a total of 11.5K Indian users.
We grouped users based on their organization. The total
number of organizations turned out to be 959. We again
filtered only on organizations which had more than 20
users. After all the filters, the dataset was reduced to 83
organizations and 6.4K users.

Data attributes collected
• Country
• Organization
• Handle
• Timestamp of user creation
• Contributions
• Number of Friends
• Rating
• Max Rating
• Rank

B. User - Submissions Dataset

Using Codeforces API, we obtained the total list of
submissions by the user. This was used to perform a
join between each user and problem submission data.
This was crucial to aggregate and extract features from
the submission data.



C. Problem Dataset

Using Codeforces API, we obtained raw problem data
of all problems on the platform. There were a total of
4637 problems with varying difficulties. Since difficulty
level of the problems were not provided by the API, we
had to scrape it from the website.

Data attributes collected
• contestId
• index
• name
• type
• tags
• Difficulty

III. FEATURE ENGINEERING

We performed a join on the user submission data and
problem data based on problem id. We then performed
statistical aggregation on the result.

We computed the mean, median and the mean of the
top 20% of the problem’s difficulty solved by the user.
The total number of problems solved successfully was
also extracted as a feature.

We classified problems into buckets based on their dif-
ficulty score and performed a count. We further classified
problems based on their problem tags and performed a
count.

Data Features Extracted
• avg difficulty
• avg difficulty20
• median difficulty
• duration
• tags (set)
• difficulty buckets (set)
• problem count
• contest count

IV. DATA VISUALISATION

One of the major consequences of this project was
that we could empirically prove that a person generally
has a higher rating if he has solved more problems than
his peers. We plotted the rating alongside the number of
problems solved for the users in the dataset to achieve
this.

V. MODELS AND TRAINING

We tried multiple models to get an idea of which
performs better.

A. Rating Predictor

Rating prediction is a regression problem. We built
Linear Regression, Random Forest and XG Boost clas-
sifiers on the dataset.

B. Rank Predictor

Rank prediction is a classification problem. We built
Logistic Regression, Random Forest and XG Boost clas-
sifiers on the dataset.

VI. RESULTS AND ANALYSIS

A. Rating Predictor

Since rating prediction is a regression problem, we
used R2 score and RMS Error as our metric. XGBoost
algorithm gave our best score with a R2 score of 0.82
and RMS Error of 75.11. Codeforces on an average gives
around −100 to +100 rating change to a contestant after
every contest based on relative performance. Since our
RMS Error is around 75 points we could certainly tell
that we are only one or two contests behind the actual
rating of the user.



B. Rank Predictor

Rank prediction is classification problem where the
rank of the given user is predicted. As we clearly can
see that predicting a user as ’expert’ (category - 4) when
he is ’candidate master’ (category - 5) is not a very bad
result as they both are very close to each other in the
ranking graph. But since the model considers these both
as completely independent categories we won’t be able
to get a good classification. The best score that we could
get was using logistic regression which gave us the mean
score of 0.604.

VII. ISSUES FACED

Data collection turned out to be tricky and time
consuming. Network issues slowed down our data crawl-
ing. Moreover codeforces blocked our IP addresses for
repeated requests. We resorted to using VPNs to get
through the restriction. We also tried parallizing our
requests using multiple threads to speed up the process.

VIII. FUTURE SCOPE

1. All the countries in the World could be included to
obtain a better dataset to build a model.

2. We could try to predict a user’s rating sometime in
the future if he continues at the same level of effort.

ACKNOWLEDGMENT

The authors would like to thank professors for their
continued guidance, support and encouragement. Further
the authors would like to thank the teaching assistants
for their valuable advice and encouragement.

REFERENCES

[1] Codeforces api documentation. [Online]. Available:
https://codeforces.com/api/help

[2] “Scikit-learn documentation.” [Online]. Available: http://scikit-
learn.org/stable/documentation.html

[3] “Pandas documentation.” [Online]. Available:
https://pandas.pydata.org/pandas-docs/stable/

[4] “Numpy documentation.” [Online]. Available:
https://docs.scipy.org/doc/

[5] “Xgboost documentation.” [Online]. Available:
https://xgboost.readthedocs.io/en/latest/

[6] “Xgboost documentation.” [Online]. Available:
https://readthedocs.org/projects/beautiful-soup-4/


