International Institute of Information Technology, Bangalore

Computer Graphics Project Elective
Real-Time Volumetric Rendering

Satvik Ramaprasad | IMT2016008

December 4, 2019

Contents

1 Objective

2 Volume Rendering|
2.1 Texture Slices Based Approach|
[2.2 3D Texture Based Approach|
(2.3 2D Multi-Texture Approach|.

|3.2 Pre-classification or pre-interpolative transfer function|
|13.3 Post Classification or post-interpolative transfer function|
[3.4 Pre-Integrated Classification|.

[4 Implementation|
[4.1 Rendering| @ @ i i e e e e e e

|5 Result Images|

12
12
14
15

16

1 Objective

Traditionally in computer graphics, objects are rendered using 3D models which
are represented as polygonal meshes or surfaces. In these model, light and color
is valuated only at points on the surface. They ignore the interaction of light taking
place in the interior of the object.

Volume rendering on the the other hand renders the volume as a whole and not
just the surfaces. It uses a wide range of techniques for generating images from
3D scalar data. It is used to render special realistic effects such as clouds, smoke
and fire. It is also used by the scientific community to visualize volumetric data.
Volume-rendering techniques are used in the following areas

1. Scientific Visualization
2. Medical Visualization
3. Computer Games

4. Visual Arts

In this project, We will focus on scientific visualization and we will study the
different techniques and concepts in volume rendering and implement a basic
volume rendering tool with a user interface to control the transfer function.

Figure 1.1: CT Angiography

2 Volume Rendering

In this section, we will explore different approaches to basic volume rendering.
We will see the trade offs between the algorithms in terms of performance and
quality.

2.1 Texture Slices Based Approach

The volumetric data will be stored in several texture images. This implies that
the hardware only has 2D subsets of the original 3D data. A stack of axis aligned
texture slices are stored.

Figure 2.1: Texture Slices

3 different axis aligned stacks are extracted and stored in GPU memory. Later,
an entire stack is rendered as a whole using bi-linear interpolation is used on
hardware. To allow interactive rotation of the data, the slicing direction must be
chosen with respect to viewing direction. The major axis must be chosen in a way
that minimizes the angle between the slice normal and viewing ray.

This is the method I have chosen to use in the implementation. This method
works fairly well and is very fast. It gives reasonably good results. However,
there are some drawbacks to this method. Firstly the sampling rate is inconsis-
tent which results in visual artifacts due to bi-linear interpolation. Secondly, the
emission, absorption is slightly incorrect. Lastly, there can be an issue with visible
flickering when the algorithm switches between different stacks of polygon slices.

Figure 2.2: 3 Stacks of Texture Slices

2.2 3D Texture Based Approach

In this approach, the entire volumetric data is stored into graphics memory. The
3D texture cannot directly be visualized by the graphics system. However, the
system allows to slice the data using texture coordinates. With this method, we
can leverage the tri-linear interpolation on hardware. The slices are parallel to
the image plane. This fixes the issue of inconsistent sampling rate seen in the 2D
textures method.

One issue with this method is that a lot of GPU memory is required. Bricking can
be one possible solution to tackle this issue. It involves breaking the entire data
into bricks and sending it to video memory in chunks. Transferring and rendering
can now be done in parallel.

Figure 2.3: Slicing in 3D Textures

2.3 2D Multi-Texture Approach

This method extends the 2D texture slices approach. Here, we super sample be-
tween two adjacent slice images. Therefore there is bi-linear interpolation by the
texture unit but tri-linear interpolation due to super sampling.

Figure 2.4: 2D Multi Texture

Hlustrated in figure [2.4] Slice S;.q is super sampled between slice S; and S;;.
It is important to note that only S; and S;;; are stored in GPU memory and any
number of slices S;;, can be sampled in between. The sampling formula is given
below.

Siva=10-a@)S; +aSi (2.1)

The sampled slices in created on the fly and doesn’t require much information
to be transferred to the GPU to draw an image slice. Due to super sampling, this
method has less sampling artifacts. By adjusting the number of slices used during
super sampling, we can ensure that the sampling rate is the same. This method
works fairly well for large volume data.

3 Transfer Functions

3.1 Classification

Classification is recognizing patterns and identifying features in a set of abstract
data values. The entire volume is essentially a brick of single or multiple variables.
In order to visually view the volume, we need to classify the different regions. This
can be done by using a transfer function. A transfer function essentially maps a
single scalar value into Emission (RGB) and Absorption (A).

Emission RGB

Transfer

R * Absorption A

Figure 3.1: Transfer Function

scalar §

In order to view the different features or regions of interest, it is essential to be
able to update the transfer function in real time.

3.2 Pre-classification or pre-interpolative transfer function

In this method, the transfer function is applied using the color table before inter-
polation or rasterization. Therefore, the transfer function is applied on each voxel.
This means the interpolation happens in the optical properties. An advantage of
this approach is that its easier to apply on all hardware types.

Geome.try Trans'fer R e | Fragm.eni
Processing Function Operations

Figure 3.2: Pre-Classifaction based transfer function

Naive Approach

Apply the transfer function/color table and save it directly on the texture. A disad-
vantage of this approach is that very high memory is consumed in main memory
and in GPU memory.

A second disadvantage of this approach is that whenever the transfer function
is changed, the entire GPU memory needs to get updated.

* Main memory - RGBA and scalar values
* GPU memoru - RGBA

F

=

Figure 3.3: Pre-Classifaction - Naive

AGP/PCle

NS RGBA Texfur

Better Approach

A better approach is to apply the transfer function / color table on the graphics
card. In this method also memory usage is high. However, the amount of data
transferred on the memory bus is reduced drastically. In this method also, when
the transfer function is changed, the entire GPU memory needs to get updated.

* Main memory - scalar values
* GPU memory - RGBA values

L

" scolr vlue 5 8

"

RG BTex’ru re

Figure 3.4: Pre-Classifaction - Better Approach

AGP/PCle

Best Approach

In this approach, the scalar values are stored along with the color table (texture
memory). However, Hardware support is necessary to use this approach. The
memory consumption in this approach is low.

* Main memory - scalar values (can be deleted after transfer)

* GPU memory - Scalar values + transfer function

When a transfer function is changed, only the color table needs to be updated
and can therefore be done in real time. The load on the main memory bus is low.

\ Scalar Texture
A Texture palette

Figure 3.5: Pre-Classifaction - Best Approach

skalar value 8§ |

AGP /PCle

Transferfunction |

3.3 Post Classification or post-interpolative transfer function

In this method, the transfer function is applied using the color table after inter-
polation or rasterization. Therefore, the transfer function is applied on each frag-
ment. This means the interpolation happens in the scalar properties. Hardware
support is generally needed for post-interpolative transfer function.

Geome.’rry L paus Trcms.fer Fragment
Processing Function Operations

Figure 3.6: Post Classification

Post Classification generally gives better results as illustrated in[3.8] It generally
has lesser sampling artifacts and better quality. I have used post-interpolative
transfer function in my implementation.

——

Pre-Classification Post-Classification

Figure 3.7: Pre-Classification vs Post-Classification

3.4 Pre-Integrated Classification

In this approach the sampling distance is considered to be fixed. Then for all
combinations of pairs of scalar values, integration is done as pre-processing and
is stored into a integral table.

front back pre-integrate all possible
slice slice combinations in the TF

-

d

Assume constant
sampling distance d

Figure 3.8: Pre-Integrated Classification

This gives the best results as this has the highest sampling rate. The integral
table needs to get updated whenever transfer function changes. This is slightly

10

heavy but can be done quickly. Pre-Integrated classification is best used when the
transfer function contains high frequencies.

11

4 Implementation

4.1 Rendering

The main approach used for rendering was 3 stack approach. A lot of experimen-
tation was done with the sampling rate. A sampling rate of 2 resulted in best
results. Initially, a basic transfer function was used which emitted white light and
had the absorption value proportional to the scalar value. The main challenge was
extracting the axis aligned texture stacks and rotating them.

Figure 4.1: Front View

12

Figure 4.2: Top View

Figure 4.3: Side View

13

Figure 4.4: Oblique View

The first phase of the project involved rendering the volume. The second phase
of the project is about applying a transfer function.

4.2 Transfer Function

For the classification phase, I decided to use post-classification which essentially
means the transfer function is applied after rasterization/interpolation. The trans-
fer function is written as a fragment shader program. The specification of the
transfer function is read from a file. The shader program is generated for the
transfer function and is uploaded. This allows us to easily change the transfer
function at run-time.

As illustrated in we can see the frequency histogram of the different scalar
values. Two peaks can be identified. The peaks indicate the different regions in
the volume. By assigning different colors we can get isolate the regions.

14

id

i .
1 M T T e e ————— — s (.
H s
860 w0 1000 100 1400 1808 1.0

Figure 4.5: Histogram

4.3 User Interface

The user interface was created in D3. Multiple transfer function segments can
be added. Their colors and opacity can be picked. The user interface is easy and
intuitive.

0,000 -

1lft I
400 a0 E 1,000 130 1,800 1,800 1,800
Add Transfer Function Upload Transter Function
r g w1 = o 800 130 . 1600 1800 wo | |EEE oS -neleln

#]
]
LR
g
i
-
8
i
H

W w) _— -
u o 1| 05 Defete

Figure 4.6: User Interface

The user interface can be used to modify the transfer function in run time. The
user interface runs on a browser. To facilitate updating of the transfer function,
there is a python flask server which receives the transfer function from the user
interface. The flask server stores the transfer function metadata in an appropriate
location. Later the flask server sends a signal to the C++ program. The C++
program then updates the transfer function.

15

5 Result Images

16

17

18

19

20

[1]

[2]
[3]

[4]

[5]

References

Learnopengl: Basic lighting. https://learnopengl.com/Lighting/
Basic-Lighting.

Learnopengl: Camera. https://learnopengl.com/Lighting/camera.

Learnopengl: Matrix transformations, coordinate systems. https://
learnopengl.com/Getting-started/Coordinate-Systems.

Learnopengl: Texture mapping. https://learnopengl.com/Lighting/
textures.

Texture mapping. https://people.cs.clemson.edu/~dhouse/courses/405/
notes/texture-maps. pdf.

[6] Virtual trackball - brocku. https://www.cosc.brocku.ca/0fferings/3P98/

course/0OpenGL/glut-3.7/progs/examples/trackball.c.

[7] Virtual trackball - Kkhronos. https://www.khronos.org/opengl/wiki/

[8]

[9]

Object_Mouse_Trackball.

K. Engel, M. Hadwiger, J. Kniss, C. Rezk-Salama, and D. Weiskopf. Real-time
volume graphics. AK Peters/CRC Press, 2006.

M. E. Groller, G. Glaeser, and J. Kastner. Stag beetle, 2005.

21

https://learnopengl.com/Lighting/Basic-Lighting
https://learnopengl.com/Lighting/Basic-Lighting
https://learnopengl.com/Lighting/camera
https://learnopengl.com/Getting-started/Coordinate-Systems
https://learnopengl.com/Getting-started/Coordinate-Systems
https://learnopengl.com/Lighting/textures
https://learnopengl.com/Lighting/textures
https://people.cs.clemson.edu/~dhouse/courses/405/notes/texture-maps.pdf
https://people.cs.clemson.edu/~dhouse/courses/405/notes/texture-maps.pdf
https://www.cosc.brocku.ca/Offerings/3P98/course/OpenGL/glut-3.7/progs/examples/trackball.c
https://www.cosc.brocku.ca/Offerings/3P98/course/OpenGL/glut-3.7/progs/examples/trackball.c
https://www.khronos.org/opengl/wiki/Object_Mouse_Trackball
https://www.khronos.org/opengl/wiki/Object_Mouse_Trackball

	Objective
	Volume Rendering
	Texture Slices Based Approach
	3D Texture Based Approach
	2D Multi-Texture Approach

	Transfer Functions
	Classification
	Pre-classification or pre-interpolative transfer function
	Post Classification or post-interpolative transfer function
	Pre-Integrated Classification

	Implementation
	Rendering
	Transfer Function
	User Interface

	Result Images

